Exam 2 will be returned tomorrow
Closing Tues: $\quad 4.3$
Closing Thurs: $\quad 4.4$
Closing next Tues: 4.4-5
Closing next Thurs: 4.7 (last assignment) I strongly suggest you finish 4.5 by the end of this week and so you can devote the last week to 4.7 and final studying.

4.3 Local Max/Min and $1^{\text {st }}$ and $2^{\text {nd }}$

 derivative tests (continued)Entry Task:
Find and classify the critical points for

$$
y=2+2 x^{2}-x^{4}
$$

(use the $1^{\text {st }}$ deriv. test)

The $\mathbf{2}^{\text {nd }}$ Derivative

$$
\begin{aligned}
& y^{\prime \prime}=f^{\prime \prime}(x)=\frac{d}{d x}\left(f^{\prime}(x)\right) \\
& \quad=\text { "rate of change of } 1^{\text {st }} \text { deriv." }
\end{aligned}
$$

Terminology
If $f^{\prime \prime}(x)$ is positive, then the slope of $f(x)$ is increasing and we say $f(x)$ is concave up.

If $f^{\prime \prime}(x)$ is negative, then the slope of $f(x)$ is decreasing and we say $f(x)$ is concave down.

A point in the domain of the function at which the concavity changes is called an inflection point.

Summary:

$\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})$	$\boldsymbol{y}^{\prime \prime}=\boldsymbol{f}^{\prime \prime}(\boldsymbol{x})$
possible inflection	zero
concave up	positive
concave down	negative
possible inflection	does not exist

Example: Find all inflection points and indicate where the function is concave up and concave down for

$$
y=x^{4}-2 x^{3}
$$

Clever Observation

(Second Derivative Test)
If $x=a$ is a critical number for $f(x)$

AND

1. if $f^{\prime \prime}(a)$ is positive (CCU), then a local min occurs at $x=a$.
2. if $f^{\prime \prime}(a)$ is negative (CCD), then a local max occurs at $x=a$.
3. if $f^{\prime \prime}(a)=0$,
then we say the $2^{\text {nd }}$ deriv. test is inconclusive (need other method)

Example: Find and classify the critical

 numbers for$$
y=2+2 x^{2}-x^{4}
$$

(use the $2^{\text {nd }}$ deriv. test)

4.4 L'Hopital's Rule

First, recall as we discussed many, many, many times at the beginning of the term:
(Assuming f and g are cont. at $x=a$)

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=? ?
$$

- If $g(a) \neq 0$, then done!

$$
\text { Ans }=\frac{f(a)}{g(a)}
$$

- If $g(a)=0$ and $f(a) \neq 0$, then examine each side of $x=a$ (look at the signs)

$$
\text { Ans }=\infty,-\infty, \text { or } D N E
$$

- If $g(a)=0$ and $f(a)=0$, then use algebra to rewrite and 'cancel' the denominator.

L'Hopital's Rule (0/0 case)

Suppose $g(a)=0$ and $f(a)=0$
2. $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}$
and f and g are differentiable at $x=a$, then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

Examples:

1. $\lim _{x \rightarrow 4} \frac{16-x^{2}}{4-x}$
2. $\lim _{x \rightarrow 0} \frac{\sqrt{1+x}-1}{x}$

Aside: Sketch of derivation
Assume $g(a)=0$ and $f(a)=0$
(These explanations are for the case when $g^{\prime}(a)$ is not zero).

Explanation 1 (def' n of derivative)

$$
\frac{f^{\prime}(a)}{g^{\prime}(a)}=\frac{\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}}{\lim _{x \rightarrow a} \frac{g(x)-g(a)}{x-a}}
$$

provided these limits exist we have:

$$
\begin{aligned}
\frac{f^{\prime}(a)}{g^{\prime}(a)} & =\lim _{x \rightarrow a} \frac{\frac{f(x)-f(a)}{x-a}}{\frac{g(x)-g(a)}{x-a}} \\
& =\lim _{x \rightarrow a} \frac{f(x)-f(a)}{g(x)-g(a)}=\lim _{x \rightarrow a} \frac{f(x)}{g(x)}
\end{aligned}
$$

Explanation 2 (tangent line approx.):
The tangent lines for $f(x)$ and $g(x)$ at

$$
\begin{aligned}
& x=a \text { are } \\
& y=f^{\prime}(a)(x-a)+0 \\
& y=g^{\prime}(a)(x-a)+0
\end{aligned}
$$

And we know these approximate the functions $f(x)$ and $g(x)$ better and better the closer x gets to a , so Thus,
$\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(a)(x-a)}{g^{\prime}(a)(x-a)}=\frac{f^{\prime}(a)}{g^{\prime}(a)}$

